A new method in highway route design : joining circular arcs by a single C - Bézier curve with shape parameter *
نویسنده
چکیده
We constructed a single C-Bézier curve with a shape parameter for G joining two circular arcs. It was shown that an S-shaped transition curve, which is able to manage a broader scope about two circle radii than the Bézier curves, has no curvature extrema, while a C-shaped transition curve has a single curvature extremum. Regarding the two kinds of curves, specific algorithms were presented in detail, strict mathematical proofs were given, and the effectiveness of the method was shown by examples. This method has the following three advantages: (1) the pattern is unified; (2) the parameter able to adjust the shape of the transition curve is available; (3) the transition curve is only a single segment, and the algorithm can be formulated as a low order equation to be solved for its positive root. These advantages make the method simple and easy to implement.
منابع مشابه
Smoothing Arc Splines Using Cubic Bézier Spiral Transitions
Arc splines are planar, tangent continuous, piecewise curves made of circular arcs and straight line segments. They are important in manufacturing industries because of their use in the cutting paths for numerically controlled cutting machinery, highway route and robot paths. This paper considers how to smooth three kinds of G biarc models: the C-, S-, and J-shaped, by replacing their parts by ...
متن کاملTENSION QUARTIC TRIGONOMETRIC BÉZIER CURVES PRESERVING INTERPOLATION CURVES SHAPE
In this paper simple quartic trigonometric polynomial blending functions, with a tensionparameter, are presented. These type of functions are useful for constructing trigonometricB´ezier curves and surfaces, they can be applied to construct continuous shape preservinginterpolation spline curves with shape parameters. To better visualize objects and graphics atension parameter is included. In th...
متن کاملA Class of Quasi-Quartic Trigonometric BÉZier Curves and Surfaces
A new kind of quasi-quartic trigonometric polynomial base functions with a shape parameter λ over the space Ω=span {1, sint, cost, sint2t, cos2t} is presented, and the corresponding quasi-quartic trigonometric Bézier curves and surfaces are defined by the introduced base functions. The quasi-quartic trigonometric Bézier curves inherit most of properties similar to those of quartic Bézier curves...
متن کاملC-shaped G2 Hermite interpolation with circular precision based on cubic PH curve interpolation
Based on the technique of C-shape G Hermite interpolation by cubic Pythagorean-Hodograph (PH) curve, we present a simple method for Cshape G Hermite interpolation by rational cubic Bézier curve. The method reproduces a circular arc when the input data come from it. Both the Bézier control points, which have the well understood geometrical meaning, and the weights of the resulting rational cubic...
متن کاملGeometric Hermite Interpolation Based on the Representation of Circular Arcs ⋆
A new heuristic method of geometric Hermite interpolation is presented to construct a planar cubic rational Bézier curve with two points and two unit tangent directions. The integral, which shows the change rate of the curvature, is taken as the energy function to measure the fairness of the parameter curve. Hence the curvature of the new curve is more stable. Since that the energy function of ...
متن کامل